超参数优化是识别给定的机器学习模型的适当的超参数配置的过程。对于较小的数据集,可以进行详尽的搜索;但是,当数据大小和模型复杂性增加时,配置评估的数量成为主要计算瓶颈。解决此类问题的有希望的范式是基于替代物的优化。此范式基础的主要思想考虑了超参数空间与输出(目标)空间之间关系的增量更新模型;该模型的数据是通过评估主学习引擎来获得的,例如基于计算机的模型。通过学习近似超参数目标关系,可以使用替代(机器学习)模型来评分大量的超参数配置,并探索除直接机器学习引擎评估的配置空间的一部分。通常,在优化初始化之前选择替代物,并且在搜索过程中保持不变。我们调查了在优化本身期间代孕物质的动态切换是否是选择最合适的基于计算机的大规模在线推荐的最合适的分解模型的实用相关性的明智概念。我们对包含数亿个实例的数据集进行了基准测试,以针对既定基线,例如随机森林和高斯基于过程的替代物。结果表明,替代转换可以提供良好的性能,同时考虑学习引擎评估较少。
translated by 谷歌翻译
我们应对嵌入功能的挑战,以改善点击率预测过程。我们选择了三个模型:逻辑回归,分解机和深层分解机,因为我们的基准并提出了五个不同的功能嵌入模块:嵌入缩放,FM嵌入,嵌入编码,NN嵌入,嵌入和嵌入重新加权模块。嵌入模块是改善基线模型特征嵌入的一种方式,并以端到端方式与其余模型参数一起训练。每个模块分别添加到基线模型中,以获得新的增强模型。我们在用于基准点击率预测模型的公共数据集上测试了增强模型的预测性能。我们的结果表明,几个建议的嵌入模块为预测性能提供了重要的提高,而不会大幅度增加训练时间。
translated by 谷歌翻译
在这项工作中,我们提出了一个可扩展有效的系统,用于探索实时招标的供应格局。该系统根据用于点击率预测的模型的预测不确定性来指导探索,并在高通量,低延迟环境中起作用。通过在线A/B测试,我们证明了使用模型不确定性的探索对模型性能和业务KPI有积极影响。
translated by 谷歌翻译